Markowitz Risk/Reward outlook diverse portfolio

157
Here's a allocated set of decimals based on 20,000 prandom portfolio constructs based on 14 years of data (since recovery after 2008-09 GFC)

This timeline gives us less noise and focuses on the momentum of the current trend.

The final ticker decimals represent % allocation based on optimal reward with minimal risk.
Note
What Is a Good Sharpe Ratio?
Sharpe ratios above 1 are generally considered “good," offering excess returns relative to volatility. However, investors often compare the Sharpe ratio of a portfolio or fund with those of its peers or market sector. So a portfolio with a Sharpe ratio of 1 might be found lacking if most rivals have ratios above 1.2, for example. A good Sharpe ratio in one context might be just a so-so one, or worse, in another.
Note
For developers:
import numpy as np
import pandas as pd
# import pandas_datareader.data as web
import matplotlib.pyplot as plt
import datetime
# from scipy.sparse.linalg import lsqr
import scipy.optimize as optimization
import yfinance as yf
from datetime import datetime

...

main:

data = download_data(stocks)
show_data(data)
returns = parse_returns(data)
plot_daily_returns(returns)
show_statistics(returns)
weights = stack_weights(stocks)
calculate_portfolio_return(returns,weights)
calculate_portfolio_variance(returns,weights)
preturns,pvariances = port_generate(weights,returns,stocks)

plot_portfolios(preturns,pvariances)
statistics(weights,returns)
#statistics(weights,preturns)
sharpe_max = sharpe_pass(weights,returns)
optimum = optimizations(weights,returns,stocks)
parse_portfolios(optimum, returns,stocks)
show_optimal_portfolio(optimum,returns,preturns,pvariances)

Clause de non-responsabilité

Les informations et les publications ne sont pas destinées à être, et ne constituent pas, des conseils ou des recommandations en matière de finance, d'investissement, de trading ou d'autres types de conseils fournis ou approuvés par TradingView. Pour en savoir plus, consultez les Conditions d'utilisation.