MLLossFunctions

Methods for Loss functions.
mse(expects, predicts) Mean Squared Error (MSE) " MSE = 1/N * sum((y - y')^2) ".
Parameters:
expects: float array, expected values.
predicts: float array, prediction values.
Returns: float
binary_cross_entropy(expects, predicts) Binary Cross-Entropy Loss (log).
Parameters:
expects: float array, expected values.
predicts: float array, prediction values.
Returns: float
Bibliothèque Pine
Dans le plus pur esprit TradingView, l'auteur a publié ce code Pine en tant que bibliothèque open-source afin que d'autres programmeurs Pine de notre communauté puissent le réutiliser. Bravo à l'auteur! Vous pouvez utiliser cette bibliothèque en privé ou dans d'autres publications à code source ouvert, mais la réutilisation de ce code dans des publications est régie par nos Règles.
Clause de non-responsabilité
Bibliothèque Pine
Dans le plus pur esprit TradingView, l'auteur a publié ce code Pine en tant que bibliothèque open-source afin que d'autres programmeurs Pine de notre communauté puissent le réutiliser. Bravo à l'auteur! Vous pouvez utiliser cette bibliothèque en privé ou dans d'autres publications à code source ouvert, mais la réutilisation de ce code dans des publications est régie par nos Règles.