PINE LIBRARY
Mis à jour AGbayLIB

Library "AGbayLIB"
Changes the timeframe period to the given period and returns the data matrix[cyear, cmonth, cday, chour, cminute_, csecond, cfulltime, copen, cclose, chigh, clow, cvolume] and sets the timeframe to the active time period
getTimeFrameValues(active_period_, period_, max_bars_)
: add function description here
Parameters:
active_period_ (string): Current time frame period to be set after getting period_ data
period_ (string): Target time period for returning data
max_bars_ (int): The historical bar count to be get
Returns: An array of data_row type with size of max_bars_ which includes rows of data: [year, month, day, hour, minute_, second, fulltime, open, close, high, clow, volume]
data_row
Fields:
year (series__integer)
month (series__integer)
day (series__integer)
hour (series__integer)
minute (series__integer)
second (series__integer)
fulltime (series__string)
open (series__float)
close (series__float)
high (series__float)
low (series__float)
volume (series__float)
Changes the timeframe period to the given period and returns the data matrix[cyear, cmonth, cday, chour, cminute_, csecond, cfulltime, copen, cclose, chigh, clow, cvolume] and sets the timeframe to the active time period
getTimeFrameValues(active_period_, period_, max_bars_)
: add function description here
Parameters:
active_period_ (string): Current time frame period to be set after getting period_ data
period_ (string): Target time period for returning data
max_bars_ (int): The historical bar count to be get
Returns: An array of data_row type with size of max_bars_ which includes rows of data: [year, month, day, hour, minute_, second, fulltime, open, close, high, clow, volume]
data_row
Fields:
year (series__integer)
month (series__integer)
day (series__integer)
hour (series__integer)
minute (series__integer)
second (series__integer)
fulltime (series__string)
open (series__float)
close (series__float)
high (series__float)
low (series__float)
volume (series__float)
Notes de version
Unused import removedNotes de version
v3Added:
data_set
Fields:
symbol (series__string)
time_period (series__string)
count (series__integer)
records (array__|data_row|#OBJ)
Updated:
getTimeFrameValues(symbol, period, max_bars, opens, closes, highs, lows, volumes, times)
: Creates an data_set typed object, copies open,close,high,low,volume,time data into records and also calculates trends of records
Parameters:
symbol (string): Symbol
period (string): Target time period for returning data
max_bars (int): The historical bar count to be get
opens (float): The historical bars of open data
closes (float): The historical bars of open data
highs (float): The historical bars of open data
lows (float): The historical bars of open data
volumes (float): The historical bars of open data
times (int): The historical bars of open data
Returns: An data_set object which contains array of data_row type which includes [timestamp, year, month, day, hour, minute, second, fulltime, open, close, high, clow, volume, trend]
Notes de version
v4Notes de version
v5Notes de version
v6Notes de version
v7Notes de version
v8Notes de version
v9Notes de version
v10Notes de version
v11Notes de version
v12Notes de version
v13Notes de version
v14Notes de version
v15Notes de version
v16Notes de version
v17Notes de version
v18Updated:
data_row
Contains candle values
Fields:
timestamp (series int): Time value of the candle
year (series int): Extracted year value from time
month (series int): Extracted month value from time
day (series int): Extracted day value from time
hour (series int): Extracted hour value from time
minute (series int): Extracted minute value from time
second (series int): Extracted second value from time
fulltime (series string)
open (series float): Open value of candle
close (series float): Close value of candle
high (series float): High value of candle
low (series float): Low value of candle
volume (series float): Volume value of candle
trend (series int): Calculated trend value of candle
trend_count (series int): Calculated trending candle count of active candle
Notes de version
v19Notes de version
v20Added:
agSetting
Fields:
symbol (series__string)
period (series__string)
iperiod (series__integer)
max_bar_count (series__integer)
min_trend_count (series__integer)
tenkansen_count (series__integer)
kijunsen_count (series__integer)
agCandle
Contains candle values
Fields:
timestamp (series int): Time value of the candle
year (series int): Extracted year value from time
month (series int): Extracted month value from time
day (series int): Extracted day value from time
dayofweek (series int)
hour (series int): Extracted hour value from time
minute (series int): Extracted minute value from time
second (series int): Extracted second value from time
fulltime (series string)
barindex (series int)
open (series float): Open value of candle
close (series float): Close value of candle
high (series float): High value of candle
low (series float): Low value of candle
volume (series float): Volume value of candle
resistantance (series bool)
supply (series bool)
trend (series int): Calculated trend value of candle
trend_count (series int): Calculated trending candle count of active candle
agZigZagNode
Fields:
candle (|agCandle|#OBJ)
candle_index (series__integer)
trend (series__integer)
pinnedCandle (|agCandle|#OBJ)
pinned_candle_index (series__integer)
agSymbolCandles
Fields:
setting (|agSetting|#OBJ)
count (series__integer)
candles (array__|agCandle|#OBJ)
zigzag_nodes (array__|agZigZagNode|#OBJ)
Updated:
getTimeFrameValues(setting, opens, closes, highs, lows, volumes, times, bar_indexes)
: Creates an data_set typed object, copies open,close,high,low,volume,time data into records and also calculates trends of records
Parameters:
setting (agSetting)
opens (float): The historical bars of open data
closes (float): The historical bars of open data
highs (float): The historical bars of open data
lows (float): The historical bars of open data
volumes (float): The historical bars of open data
times (int): The historical bars of open data
bar_indexes (int)
Returns: An agSymbolCandles object which contains array of agCandles type which includes [timestamp, year, month, day, hour, minute, second, fulltime, open, close, high, clow, volume, trend]
Removed:
data_row
Contains candle values
data_set
Notes de version
v21Notes de version
v22Notes de version
v23Notes de version
v24Notes de version
v25Notes de version
v26Notes de version
v27Notes de version
v28Notes de version
v29Notes de version
v30Notes de version
v31Notes de version
v32Notes de version
v33Notes de version
v34Notes de version
v35Notes de version
v36Notes de version
v37Notes de version
v38Notes de version
v39Notes de version
v40Added:
isBearishBullish(setting, copen, cclose, clow, chigh)
: Searches bearish and bullish order blocks
Parameters:
setting (agSetting): setting parameters for calculation
copen (float)
cclose (float)
clow (float)
chigh (float)
Returns: [bullishOB, bearishOB, OB_bull, OB_bull_chigh, OB_bull_clow, OB_bull_avg, OB_bear, OB_bear_chigh, OB_bear_clow,OB_bear_avg] Tuple
Updated:
agCandle
Contains candle values
Fields:
timestamp (series int): Time value of the candle
year (series int): Extracted year value from time
month (series int): Extracted month value from time
day (series int): Extracted day value from time
dayofweek (series int)
hour (series int): Extracted hour value from time
minute (series int): Extracted minute value from time
second (series int): Extracted second value from time
fulltime (series string)
barindex (series int)
open (series float): Open value of candle
close (series float): Close value of candle
high (series float): High value of candle
low (series float): Low value of candle
volume (series float): Volume value of candle
resistantance (series bool)
supply (series bool)
trend (series int): Calculated trend value of candle
trend_count (series int): Calculated trending candle count of active candle
is_order (series bool)
is_white (series bool)
is_bullish (series bool)
Bibliothèque Pine
Dans l'esprit TradingView, l'auteur a publié ce code Pine sous forme de bibliothèque open source afin que d'autres programmeurs Pine de notre communauté puissent le réutiliser. Bravo à l'auteur! Vous pouvez utiliser cette bibliothèque à titre privé ou dans d'autres publications open source, mais la réutilisation de ce code dans des publications est régie par nos Règles.
Clause de non-responsabilité
Les informations et publications ne sont pas destinées à être, et ne constituent pas, des conseils ou recommandations financiers, d'investissement, de trading ou autres fournis ou approuvés par TradingView. Pour en savoir plus, consultez les Conditions d'utilisation.
Bibliothèque Pine
Dans l'esprit TradingView, l'auteur a publié ce code Pine sous forme de bibliothèque open source afin que d'autres programmeurs Pine de notre communauté puissent le réutiliser. Bravo à l'auteur! Vous pouvez utiliser cette bibliothèque à titre privé ou dans d'autres publications open source, mais la réutilisation de ce code dans des publications est régie par nos Règles.
Clause de non-responsabilité
Les informations et publications ne sont pas destinées à être, et ne constituent pas, des conseils ou recommandations financiers, d'investissement, de trading ou autres fournis ou approuvés par TradingView. Pour en savoir plus, consultez les Conditions d'utilisation.